pertambangan emas menghasilkan limbah logam berat cair seperti

Darisifat dan karasteristik logam berat yang berbeda beda tersebut terdapat beberapa manfaat yang dapat diambil dari logam berat diantaranya sebagai berikut: 1. Penghantar Listrik. Selain manfaat bahan tambang tembaga dalam kehidupan sehari-hari kita tidak pernah lepas dari listrik, listrik berfungsi untuk mengisi baterai handphone yang Diagramalir pengolahan limbah cair tertera pada gambar 1. 4.1 Kolam limbah Kolam limbah menampung limbah cair dari proses pengolahan bijih emas dengan cara sianidasi. Limbah cair ini dipompakan/dialirkan ke tangki reaktor. 4.2 Tangki reaktor Ke dalam tangki reaktor ditambahkan bahan pengatur pH yang berfungsi untuk mengatur pH. Untukpengolahan limbah B3 yang mengandung logam berat, sebuah perusahaan pemulung mendapati kenyataan bahwa ponsel dan kartu SIM merupakan tambang emas yang benar-benar hebat. Jika dari satu ton material yang diambil di tambang emas konvensional hanya didapat sekitar 5 gram emas, dari satu ton ponsel bekas yang dilebur bisa TINJAUANPUSTAKA. 2.2. Sifat Fisik dan Kimia Logam Berat. Logam berat adalah unsur dengan bobot jenis lebih besar dari 5 g/cm 3. Logam berat mempunyai afinitas yang tinggi terhadap unsur S, terletak pada sudut bawah daftar periodik pada priode 4 – 7 dengan nomor atom 22 – 92. Logam berat dapat membentuk mineral atau senyawa logam bila Untukmengetahui berapa jumlah merkuri yang dipergunakan pada kegiatan Pertambangan Emas Skala Kecil (PESK), terdapat panduan atau toolkit yang diterbitkan oleh UN dalam versi 1.0 dengan judul “Metode dan Alat untuk Memperkirakan Penggunaan Merkuri dan Mendokumentasikan Praktik pada PESK”. Panduan ini dirancang untuk membantu Sites De Rencontre Pour Jeunes Ado. Pemanfaatan Limbah Tambang Emas – Kehidupan manusia tidak terlepas dari bahan tambang seperti emas. Maka dari itu, aktivitas dari sektor pertambangan emas tidak pernah lepas dan tidak pernah berhenti. Melalui aktivitas tersebut yang nantinya akan membuat limbah dari kegiatan pertambangan akan menjadi tinggi. Kegiatan pertambangan sebenarnya bukan hanya untuk mendapatkan hasil tambang, tapi juga harus memperhatikan berbagai faktor alam akibat penambangan tersebut. Banyak masyarakat yang mengatakan dan berasumsi mengenai limbah pertambangan yang yang dapat merusak lingkungan. Namun sebenarnya limbah tersebut dapat diolah sehingga dapat dimanfaatkan oleh manusia. Limbah Pertambangan Emas Limbah atau dengan kata lain disebut dengan waste yang merupakan semua jenis bahan sisa hasil penambangan setelah melakukan proses produksi. Limbah ini akan berpotensi merusak lingkungan dan menjadi penyebab ketidakseimbangan ekosistem lingkungan alami pertambangan apabila limbah pertambangan tersebut tidak dikelola dengan baik. Oleh karena itu, limbah tersebut sudah selayaknya dikelola dengan lazim. Berbagai limbah yang merupakan residu dari kegiatan pertambangan biasanya berupa tailing, logam tanah jarang, lumpur, slag, dan lain sebagainya. Pemanfaatan Limbah Tambang Emas Berdasarkan perkembangan teknologi saat ini yang semakin handal, proses pada pengolahan limbah juga dapat dilakukan dengan lebih canggih untuk meningkatkan daya guna dari limbah yang diproses ulang tersebut. Namun, proses limbah juga harus dilakukan melalui kontrol kualitas yang sangat ketat untuk memastikan tidak ada kebocoran limbah yang akan merugikan lingkungan sekitar. Pada proses ini juga melibatkan pengawasan dari masyarakat sekitar dan pemerintah yang ikut serta berperan. Dalam kegiatan pertambangan emas, limbah hasil pertambangan dapat diolah untuk menghasilkan sebuah emisi yang minimal hingga tahap zero waste atau tidak ada yang terbuang sama sekali. Berikut ini contoh pemanfaatan limbah hasil dari kegiatan pertambangan 1. Sebagai Material Konstruksi Ini merupakan salah satu jenis pemanfaatan limbah yang paling umum digunakan yaitu sebagai bahan konstruksi. Adapun jenis limbah yang dapat diaplikasikan sebagai bahan konstruksi yaitu seperti lumpur, slag, taling, dan sebagainya. Dalam hal ini, slag dapat digunakan dalam pembuatan agregat beton dan sand blasting. Selain itu, lumpur halus dapat digunakan pada pembuatan konstruksi tambang yang terletak di bawah tanah agar menjadi lebih kuat. Sedangkan taling merupakan limbah hasil pertambangan yang dapat menghasilkan bahan konstruksi dengan aman. Adapun bahan konstruksi yang dapat dihasilkan lainnya yaitu berupa genteng, paving blok, dan batu bata. 2. Sebagai Pembangkit Listrik Limbah dapat dijadikan sebagai sumber tenaga listrik untuk limbah yang berbentuk gas seperti Sulfur dioksida SO2. Hal ini tidak hanya memberikan keefisienan dan meminimalisir pembuangan gas residu di lingkungan bebas, akan tetapi kegiatan ini juga dapat sebagai solusi atau alternatif untuk memperkecil biaya produksi listrik. 3. Sebagai Bahan Baku Pabrik Semen Ada pula jenis limbah B3 yang tersisa setelah dipisahkan dari bahan logam tambang yang berupa slug , bentuk yang seperti batu kaca dan biasanya mengandung sulfida, logam oksida, silikon dioksida, dan lain sebagainya. Biasanya limbah ini dapat dimanfaatkan sebagai bahan baku pembuatan semen jika sudah melalui proses pengolahan tertentu. 4. Penggunaan Kembali dengan Proses Daur Ulang Limbah hasil dari pertambangan dapat dilakukan proses daur ulang untuk dijadikan masker bekas yang kemungkinan besar memiliki logam berharga yang tertempel di masker tersebut. Selain itu, limbah ini juga bisa didaur ulang menjadi material lainnya seperti bag filter yang biasanya dilakukan dengan dengan teknik peleburan yang dikerjakan pada pabrik – pabrik tertentu. Pada umumnya jenis limbah dari pertambangan memiliki tiga jenis yaitu zat cair, gas, dan padatan. Hal ini berlaku di pertambangan emas, mulai dari proses pengerukan, pemisahan dari batuan lainnya, serta pemurnian kadarnya. Keseluruhan proses tersebut memerlukan bantuan zat kimia aktif, seperti pemanfaatan sianida untuk menghindari terbentuknya merkuri. Pemecahan bijih juga menghasilkan lumpur yang cukup banyak. Penggunaan alat – alat berat juga memberikan efek signifikan terhadap perubahan komposisi dan kemurnian udara di sekitar pertambangan. Salah satu cara untuk mengatasinya yaitu dengan melakukan pengolahan limbah tambang emas. Hal ini dilakukan untuk mengurangi zat – zat berbahaya dan pengolahan material yang masih bisa dimanfaatkan. Oleh karena itu, pemrosesan limbah tersebut wajib dilakukan, karena dapat mengurangi dampak dan memberikan manfaat yang sangat besar. Salah satu pengolahan limbah yang lazim dilakukan dengan mengubahnya menjadi bahan bangunan. Baca Juga Identifikasi Daerah Penghasil Emas yang Penting untuk Diketahui Pemanfaatan Limbah Tambang Emas Sebagai Bahan Bangunan Salah satu tujuan pembangunan dari Indonesia adalah pembangunan berkelanjutan yang berarti tercipta keseimbangan antara ekonomi serta lingkungan. Hal ini juga berarti bahwa eksploitasi sumber daya secara berlebihan atau pembangunan dengan dampak negatif mulai dikurangi. Salah satunya dengan mengelola hasil pertambangan yang saat ini menjadi isu penting. Urgensi ini ternyata membawa ide baru dalam pengelolaannya, yaitu memanfaatkan tailing dari limbah tambang emas menjadi bahan bangunan, salah satunya sebagai pencampur beton. Tailing memiliki kandungan melebihi batas minimal sebagai pencampur beton. Selain itu, tailingnya sudah terbebas dari logam berat atau sianida hasil dari percampuran dengan semen. Salah satu proses yang dilalui sebelum menjadikan tailing dari limbah tambang emas sebagai material bangunan ramah lingkungan adalah stabilisasi/solidifikasi S/S. S/S ini memberikan efek untuk mengurangi mobilitas logam berat dalam suatu material. Proses tersebut dapat terjadi karena adanya interaksi antara tailing dan zat bersifat pozzolan seperti semen. Campuran tersebut membentuk padatan keras monolit yang terjadi karena sifat kimia dari tailing serta fisik semennya. Hal ini menjadikannya sebagai bahan bangunan ramah lingkungan atau dikenal sebagai Green Fine Aggregate GFA. Ketahanannya sendiri sudah memenuhi persyaratan minimum, yaitu dengan campuran 50% semen dapat menahan 40 MPa. Manfaat yang Akan Dirasakan Manfaatnya dapat dirasakan dalam berbagai bentuk, mulai dari paving block, genteng, batako, panel/tiang, dan berbagai material bangunan lainnya. Material berlimpah menjadikannya sebagai alternatif bahan bangunan berkualitas. Untuk memanfaatkannya bisa dirupakan dalam berbagai bentuk, mulai dari program CSR atau menjualnya secara bebas. Sosialisasi tentang manfaat serta proses pengolahan limbah tambang emas bisa menjadi salah satu langkah kampanye kesadaran mengurangi limbah pertambangan. Indonesia memiliki potensi mineral tinggi, mulai dari emas, perak, minyak bumi, dan berbagai mineral lainnya. Namun salah satu kendalanya adalah memanfaatkan limbahnya. Tetapi kini dengan proses s/s limbah tambang emas bisa jadi bahan bangunan yang berkualitas tinggi dan tinggi akan manfaat. Baca Juga Dari Pengolahan Emas, Ini 5 Manfaat yang Dapat Anda Nikmati Jika Anda tertarik dengan informasi-informasi mengenai emas atau pertambangan emas, Anda bisa membaca artikel-artikel dari PT. Agincourt Resource di sini. › Pertambangan emas tanpa izin di sejumlah daerah menimbulkan persoalan. Pencemaran logam berat berupa limbah merkuri atau air raksa mengancam kesehatan warga dan lingkungan. KOMPAS/NIKSON SINAGA Para pekerja tambang emas rakyat melakukan aktivitas penggalian dengan mesin dompeng di Kecamatan Batang Natal, Kabupaten Mandailing Natal, Sumatera Utara, Selasa 12/11/2019. Meskipun tidak menggunakan bahan kimia berbahaya seperti merkuri dan sianida, pertambangan itu membuat lubang besar dan air yang keruh di sepanjang Sungai Batang KOMPAS — Areal seluas 496 hektar di Indonesia masih terkontaminasi limbah bahan beracun dan berbahaya atau B3 yang berasal dari pencemaran merkuri akibat penambangan emas skala kecil dan tanpa izin. Upaya mempercepat pemulihan tanah terkontaminasi dan pencegahan peredaran serta perdagangan merkuri ilegal agar terus Lingkungan Hidup Kementerian Perencanaan Pembangunan Nasional PPN/Badan Perencanaan Pembangunan Nasional Bappenas Medrilzam mengemukakan, seluas 4,96 juta meter persegi atau 496 hektar lahan terkontaminasi tersebut berasal dari kegiatan pertambangan dan manufaktur, baik dioperasikan secara individu maupun terlembaga. Data terakhir pada 2020 yang diolah Bappenas menunjukkan, sampai saat ini masih terdapat 197 titik penambangan emas skala kecil di berbagai wilayah di Indonesia. Dari jumlah tersebut, 15 titik berada di kawasan taman nasional atau cagar bekerja sama dengan Kementerian Energi dan Sumber Daya Mineral mencoba untuk melembagakan penambangan emas skala kecil ini untuk membangun pertambangan skala rakyat tetapi memiliki ketentuan yang benar. Haruki Agustina”Terdapat juga tiga lokasi penambangan batu sinabar sebagai mineral mengandung merkuri. Dari catatan kami, sinabar ini berpotensi didistribusikan ke setidaknya lima lokasi lain di Indonesia,” ujar Medrilzam dalam webinar bertajuk ”Merkuri dalam Tanah dan Lahan Terkontaminasi Merkuri”, Kamis 29/4/2021.KOMPAS/YOLA SASTRA Para petambang menggunakan mesin pompa air dan alat dulang saat beraktivitas di tambang emas ilegal sekitar Sungai Pamong Besar, Nagari Lubuk Gadang, Kecamatan Sangir, Solok Selatan, Sumatera Barat, Senin 25/11/2019. Mereka mencari emas dari sisa material petambang yang menggunakan ekskavator. Para petambang ini menggunakan merkuri untuk mengikat mengurangi dampak merkuri atau air raksa Hg ini, Medrilzam memandang perlunya mendorong pelegalan penambangan emas tanpa izin dengan memberikan pendampingan dan sejumlah bantuan teknis atau nonteknis. Kegiatan penambangan ilegal dengan merkuri diharapkan dapat berkurang jika pemerintah memberikan izin usaha pertambangan rakyat dan menutup seluruh kegiatan tambang sinabar secara permanen.”Larangan impor sudah tertuang dalam peraturan menteri perdagangan, tetapi ada catatan Indonesia masih menjadi produsen sekaligus eksportir merkuri pada 2016. Kita perlu terus memperketat pengawasan terhadap ekspor impor merkuri, khususnya menyusun kebijakan pelarangan ekspor sebagai komitmen pemerintah,” memitigasi pencemaran merkuri jangka menengah maupun panjang, Bappenas menerapkan tiga strategi kunci. Tiga strategi tersebut adalah memperkuat sistem peringatan dini bencana lingkungan, memperkuat kapasitas sumber daya manusia untuk pemantauan hingga penegakan hukum, serta mempercepat penyusunan rencana aksi daerah pengurangan dan penghapusan juga Aturan Pelarangan Impor Merkuri Perlu DiperjelasPenguatan peringatan sistem dini bencana lingkungan dilakukan melalui sejumlah langkah, seperti peningkatan kapasitas laboratorium beserta peralatannya dan pengembangan baku mutu lingkungan. Pada 2020, pemerintah telah membangun laboratorium merkuri dan metrologi lingkungan melalui surat berharga syariah negara. Laboratorium ini dapat melakukan uji merkuri di dalam larutan, air, udara, padatan, dan biota.”Kami berharap laboratorium yang sudah dibangun ini dapat mengembangkan jaringan penelitian dan pemantauan merkuri di Indonesia sekaligus memperkuat surveilans. Laboratorium ini juga bisa menjadi pusat laboratorium merkuri lainnya di Indonesia dan menjadi pencapaian pemerintah dalam COP Konferensi Para Pihak 4 Minamata yang akan datang,” PESKMeski 197 titik penambangan emas skala kecil PESK termasuk ilegal dan mayoritas masih menggunakan merkuri, Direktur Pemulihan Kontaminasi dan Tanggap Darurat Limbah B3 Kementerian Lingkungan Hidup dan Kehutanan KLHK Haruki Agustina memandang kegiatan tersebut terdapat unsur ekonomi kerakyatan. Oleh karena itu, persoalan PESK yang menggunakan merkuri tidak bisa dengan mudah diselesaikan tanpa adanya solusi alternatif.”KLHK bekerja sama dengan Kementerian Energi dan Sumber Daya Mineral mencoba untuk melembagakan PESK ini untuk membangun pertambangan skala rakyat tetapi memiliki ketentuan yang benar. Pertambangan ini sudah mulai didata. Kedua, kami juga melakukan edukasi bahaya merkuri kepada masyarakat karena mereka tidak mengetahuinya,” mengatakan, sektor PESK menjadi target utama mengatasi merkuri di luar sektor rumah sakit. Sebab, sampai saat ini masih terdapat peralatan kesehatan di rumah sakit yang menggunakan merkuri, seperti termometer, sphygmomanometer pengukur tekanan darah, amalgam gigi, baterai dan lampu, serta alat pencahayaan.”Pemulihan lingkungan akibat merkuri menjadi skala nasional. Kami memiliki peta jalan seperti di Gunung Botak Maluku. Namun, masih ada kendala akses karena mayoritas berada di area permukiman warga. Sosialisasi dan penggantian merkuri dengan bahan yang lebih ramah lingkungan juga sudah kami lakukan,” juga Cegah Penggunaan Merkuri di Tambang Emas TamilouwPengajar Program Studi Ilmu Tanah Universitas Sam Ratulangi, Ronny Soputan, memaparkan, pemisahan merkuri dan emas dari matrik batuan dapat dilakukan dengan teknik pirometalurgi suhu tinggi dan hidrometalurgi menggunakan reaksi-reaksi kimia dalam larutan berair. Namun, cara terbaik yang bisa dilakukan PESK adalah dengan menyosialisasikan pemisahan emas dari batuan dengan metode ijuk.”Teknologi secanggih dan sesederhana apa pun yang diterapkan petambang emas tanpa izin tetap akan menghasilkan merkuri. Karakteristik tanah ini perlu dikaji dan diketahui. Jadi, penetapan baku mutu merkuri dalam tanah dilakukan juga berdasarkan jenis tanah tempat PESK tersebut beroperasi,” tuturnya. Bagaimana cara yang tepat untuk menangani limbah pertambangan? Industri tambang di Indonesia memang mendukung perekonomian negara secara signifikan. Dalam mineral potential index, Indonesia bahkan berada di posisi yang strategis menjadi penyumbang timah terbesar, berada di urutan kedua untuk tembaga, dan urutan ketiga untuk nikel. Pertambangan juga berkontribusi besar dalam ekspor hingga pembentukan PDB Pendapatan Domestik Bruto. Industri tambang menyumbang sekitar 7,2% PDB Indonesia pada tahun balik segala keuntungan tersebut, nyatanya sektor pertambangan pun memiliki beberapa tantangan. Salah satunya adalah masalah limbah. Di beberapa wilayah dunia, seperti benua Eropa, limbah pertambangan bahkan merupakan penyebab utama pencemaran air. Hal ini tentu dapat membahayakan keselamatan makhluk hidup, terutama yang berada di sekitar daerah bahkan dapat menghadapi risiko yang lebih besar jika pengolahan limbah pertambangan tidak dilakukan secara serius. Pasalnya, ada banyak sekali daerah di Indonesia yang menjadi daerah tambang. Beragam jenis mineral pun ada di Indonesia, mulai dari timah, tembaga, nikel, bahkan emas sekalipun ada. Tambang yang aktif beroperasi pun masih banyak kali ini akan membahas tentang dampak limbah pertambangan serta cara menanganinya dengan tepat agar tidak membahayakan lingkungan. Mari simak Juga Limbah Industri Jenis, Dampak, dan Cara MengolahnyaApa itu limbah pertambangan?Sebelum lebih jauh membahas tentang cara penanganan, sebenarnya apa yang dimaksud dengan limbah pertambangan? Ini merupakan jenis limbah yang berasal dari penggalian tanah, limpasan hujan dan pengolahan pabrik pertambangan. Limbah pertambangan bisa berupa lapisan tanah yang menutupi mineral yang dipindahkan untuk bisa mendapat akses ke sumber daya mineral, hingga batuan sisa dan juga tailing yang muncul setelah proses ekstraksi mineral berharga.Limbah ini mengandung zat berbahaya dalam jumlah besar, seperti logam berat. Ekstraksi serta pemrosesan logam dan senyawa logam dapat menyebabkan drainase asam atau aktivitas pertambangan emas bisa menimbulkan limbah pertambangan yang mengandung arsenik, timbal, dan merkuri dengan konsentrasi tinggi. Padahal, arsenik dalam konsentrasi tinggi dapat menimbulkan keracunan yang berujung itu, pengelolaan tailing pun sangat berisiko dan sering kali menghasilkan sisa bahan kimia berbahaya dan peningkatan kadar logam. Tailing sering dikelola dengan metode konvensional menggunakan sedimen pond. Metode ini memungkinkan terjadinya peluapan overflow berlebih seiring semakin banyaknya lumpur yang datang sehingga menimbulkan kontaminasi terhadap lingkungan dan dampak panjang pada kesehatan manusia dan limbah tambang dengan benar akan memastikan keberlangsungan produksi pengolahan tambang dan mencegah terjadinya pencemaran terhadap lingkungan. Dengan begitu, polusi air dan tanah yang timbul dari drainase asam atau basa dan pencucian logam berat pun dapat diminimalkan atau bahkan cair sebagai Limbah Tambang DominanJika melihat sifat zat, maka limbah pertambangan dikelompokkan dalam tiga kategori, yakni limbah cair, limbah padat, dan limbah pertambangan cair biasanya muncul akibat proses pencucian hasil tambang. Proses tambang yang panjang kemungkinan besar akan menghasilkan limbah cair dengan tingkat kontaminasi yang berbeda. Air yang sudah terpapar berbagai proses penambangan biasanya bersifat asam dan dapat mencemari sumber air di lokasi tambang, pencampuran output ini dengan padatan disebut dengan lumpur sludge. Lumpur punya nilai ekonomi yang sangat kecil sehingga ditangani sebagai limbah. Jika lumpur memiliki bahan berbahaya atau radioaktif, dapat diklasifikasikan sebagai limbah berbahaya. Ini akan memerlukan metode penanganan dan pembuangan cair terkadang dikelompokkan dalam dua kategori berbeda, yaitu menurut Total Dissolved Solid logam terlarut dan Total Suspended Solid padatan tersuspensi. TSS dan TDS mengukur jumlah partikel potongan kecil benda yang mengambang di air. Di danau dan sungai, hal ini dapat mencakup partikel dari ganggang, bahan organik lainnya, tanah liat, dan zat anorganik lainnya seperti mineral, garam dan logam. TSS adalah partikel yang cukup besar untuk ditahan oleh filter, sedangkan TDS adalah partikel yang dapat melewati sering dikaitkan dengan kekeruhan air. Jika TSS tinggi dan air keruh, maka cahaya matahari tidak akan merambat dengan baik melalui air, sehingga tanaman dan ganggang sulit tumbuh. Itu berarti, produktivitas dan produksi oksigen dalam air rendah. Dalam konteks limbah pertambangan, kondisi ini terjadi saat air mengandung terlalu banyak tanah dan lumpur yang membuat organisme di dalamnya tidak itu, TDS menyoroti mineral terlarut dan garam dalam air. Akibatnya, TDS sering kali berhubungan erat dengan ukuran konduktivitas, salinitas, alkalinitas, dan tingkat kekerasan. Sebagian besar ikan air tawar tidak dapat menoleransi TDS tinggi karena organ mereka tidak dapat beradaptasi dengan air asin, seperti ikan Juga Landfill Definisi, Jenis, Material, dan Prosedur PembuatannyaDampak limbah pertambanganLimbah pertambangan menimbulkan dampak negatif yang begitu besar, baik itu berupa kerusakan lingkungan dan bahaya kesehatan manusia. Banyak operasi pertambangan menyimpan limbah atau tailing dalam jumlah besar di lokasi. Sisa batu dan tanah dapat berubah menjadi tailing, yang sering kali bersifat asam dan mengandung arsenik, merkuri, dan zat beracun lain dengan konsentrasi adalah beberapa dampak negatif limbah pertambangan1. Pencemaran lingkunganLimbah pertambangan dapat mencemari lingkungan hidup. Terlebih, pertambangan menghasilkan limbah yang beragam, mulai dari zat cair, padat, dan bahkan gas. Dengan kata lain, limbah tambang memiliki potensi bahaya yang begitu cair akan mengotori sumber mata air, sungai, dan laut. Dampak yang paling terlihat, air akan tampak keruh dan bahkan mengeluarkan bau tidak sedap. Otomatis, organisme yang hidup di dalamnya pun akan terancam. Air yang semula dapat dimanfaatkan untuk menyokong kehidupan pun kini hanya menjadi juga dengan limbah padat yang akan mengubah kontur tanah. Aktivitas pertambangan akan membuat lahan yang semula normal menjadi berlubang. Lubang-lubang ini saat terisi air akan sangat berbahaya. Sebab, air dalam lubang tersebut akan memiliki kandungan asam tinggi. Jika konsentrasi asam terlalu tinggi, maka area di sekitarnya pun akan sulit ditumbuhi tanaman karena tingkat kesuburan tanah Mengancam kehidupan hewan di sekitarnyaDi saat limbah pertambangan merusak lingkungan, otomatis kehidupan hewan yang hidup di dalamnya pun akan terganggu. Hewan-hewan kecil akan mati karena habitatnya berubah. Hal ini kemudian akan merusak rantai makanan secara contoh limbah cair pertambangan yang mencemari sungai. Limbah ini akan membunuh ikan dan organisme lain. Hewan pemangsa ikan sungai pun akan kesulitan mendapat makan hingga akhirnya mati kelaparan. Jika kondisi terus berlanjut, maka predator pun ikut kesulitan mencari mangsa, mengakibatkan keseluruhan rantai makanan di habitat tersebut Membahayakan nyawa manusiaTidak hanya lingkungan alam dan hewan, manusia pun bisa menerima dampak negatif limbah pertambangan. Bagaimana tidak, lingkungan adalah penyokong utama kehidupan manusia. Tanpa lingkungan yang lestari, maka manusia akan sulit untuk hidup warga Desa A terbiasa menggunakan sungai C untuk aktivitas sehari-hari, mulai dari memasak, mencuci, hingga mandi. Saat kemudian di dekat Desa A dilakukan aktivitas pertambangan yang membuang limbahnya di sungai C, maka warga desa A pun tidak bisa lagi melakukan aktivitas seperti biasa. Mereka terpaksa harus bergantung pada sumber daya lain dari luar satu jenis penyakit yang sering ditemukan pada pekerja tambang adalah pneumoconiosis yang menyerang organ paru-paru. Penderitanya akan sering merasa sesak napas, mudah lelah, bahkan gagal napas. Penyakit ini muncul akibat paparan langsung terhadap zat kimia berbahaya dalam tambang, seperti silica dan asbestos. Data dari Kementerian Kesehatan menyebutkan bahwa sekitar 9% dari pekerja tambang Indonesia menderita pneumoconiosis hanya mengganggu kerja paru-paru, limbah pertambangan juga bisa menyebabkan kanker kulit. Hal ini bisa terjadi pada aktivitas pertambangan yang menghasilkan belerang, asam sulfat, mangan, dan merkuri. Sebab, zat-zat tersebut masuk dalam kelompok logam berat yang dapat merusak jaringan kulit pengelolaan dan pengolahan limbah pertambanganIndonesia sendiri sudah memiliki peraturan mengenai pengelolaan dan pengolahan limbah pertambangan. Bahkan negara telah mengatur ketentuan mengenai aktivitas pascatambang agar wilayah bekas tambang bisa segera garis besar, ketentuan mengenai pengelolaan dan pengolahan limbah pertambangan telah tertuang dalam Peraturan Menteri Energi dan Sumber Daya Mineral Permen ESDM Nomor 7 Tahun 2020 tentang Tata Cara Pemberian Wilayah, Perizinan, dan Pelaporan pada Kegiatan Usaha Pertambangan Mineral dan ini menyebutkan bahwa salah satu aspek yang dilihat dalam penerbitan izin tambang adalah masalah pengelolaan dan pengolahan limbah. Apabila perusahaan tambang tidak dapat membuktikan metode pengolahan limbahnya, maka Izin Usaha Pertambangan IUP tidak akan itu, pemerintah juga telah mengatur tentang aktivitas pasca tambang melalui Peraturan Pemerintah PP Nomor 78 Tahun 2010 tentang Reklamasi dan Pasca Tambang. Peraturan ini berisi ketentuan yang wajib dijalankan oleh para pelaku kegiatan tambang setelah aktivitas tambang berakhir. Dengan begitu, lahan yang ditinggalkan bisa tetap dimanfaatkan dengan aman tanpa membahayakan keselamatan dan cara mengolah limbah pertambangan?Melihat bahaya limbah pertambangan, maka proses pengelolaan dan pengolahannya harus dilakukan dengan sangat hati-hati. Ada beberapa cara yang bisa dilakukan untuk mengolah limbah tambang dengan dampak seminimal mungkin, berikut adalah beberapa di pH adjusterSeperti yang telah disebutkan sebelumnya, aktivitas tambang akan menghasilkan lubang-lubang dalam yang nantinya terisi air saat musim hujan tiba. Sayangnya, air yang tertampung dalam lubang tersebut berbahaya untuk digunakan dan bahkan tidak bisa ditinggali organisme apapun karena mengandung asam yang sangat mengatasi permasalahan tersebut, bisa diterapkan sebuah metode yang disebut sebagai pH adjuster pengatur pH. Sebenarnya, ini merupakan bahan kimia yang digunakan untuk mengubah kadar pH atau potential hydrogen. Nah, pH sendiri adalah pengukuran aktivitas ion hidrogen yang akan menentukan seberapa basa atau asam suatu menambahkan reagen pH seperti asam, maka Anda dapat menurunkan kadar pH. Sementara itu, untuk menaikkan pH, Anda bisa menggunakan zat kaustik atau alkali lainnya. Kisaran pH tipikal adalah 0-14, tetapi tingkat pH aktual dapat melebihi batas sulfat dan natrium hidroksida kaustik paling sering digunakan untuk menetralkan asam atau basa. Penyesuaian basa harus dilakukan secara hati-hati karena semakin besar aplikasinya, maka semakin banyak panas yang dihasilkan. Tiap air di lubang tambang pun belum tentu memiliki kadar asam yang sama sehingga penyesuaian pH harus melalui pengukuran detail terlebih Sumur dalamSumur dalam atau deep well injection merupakan salah satu metode untuk membuang limbah tambang. Caranya adalah dengan membuat saluran khusus untuk membuang limbah ke lapisan tanah dalam agar tidak mengganggu lapisan tanah dangkal. Kedalaman sumur harus diperhitungkan dengan cermat agar tidak mencemari tanah dan air melakukan perhitungan kedalaman, juga harus memperhatikan material yang digunakan untuk melapisi permukaan sumur. Tanpa material yang berkualitas, dikhawatirkan limbah yang dibuang akan merembes atau bahkan bocor hingga mencemari lapisan tanah di bisa mempertimbangkan geopipe, pipa polimer khusus yang dapat digunakan dalam drainase cairan maupun gas termasuk pengumpulan lindi atau gas di tempat pembuangan akhir. Geopipe menjadi solusi pembuatan sumur dalam karena memiliki lapisan filter geotextile untuk mencegah terjadinya rembesan atau material geopipe berkualitas, Anda dapat mengandalkan Geosinindo. Geopipe terbuat dari material berkualitas dengan instalasi yang mudah, memiliki kekuatan beban eksternal tinggi, fleksibel, dan tahan Secure landfillSelain kedua metode di atas, pengolahan limbah pertambangan juga bisa menggunakan metode secure landfill. Ini merupakan fasilitas pembuangan limbah berbahaya yang ditempatkan di dalam atau di atas tanah, dirancang untuk mencegah pencemaran yang disebabkan oleh aktivitas pertambangan. Kedalaman minimal secure landfill adalah sekitar 3 secure landfill dapat bekerja secara efektif, maka permukaannya harus dilapisi dengan material khusus. Dengan begitu, limbah tambang yang ditampung di dalamnya tidak akan bocor hingga mencemari lingkungan di satu material yang bisa digunakan adalah geomembrane. Ini merupakan material pelapis sintetik dengan tingkat permeabilitas kemampuan suatu material untuk meloloskan partikel tertentu yang sangat rendah. Geomembrane memang umum digunakan dalam proyek rekayasa geoteknik yang mengontrol migrasi cairan. Biasanya, geomembrane terbuat dari lembaran polimer yang relatif secure landfill tidak mudah bocor dan rusak, gunakanlah material berlapis berkualitas. Geomembrane dari Geosinindo memiliki tingkat permeabilitas yang sangat rendah. Dengan biaya terjangkau, material ini memiliki ketahanan yang begitu baik terhadap zat kimia. Bukan hanya itu, geomembrane Geosinindo juga tahan terhadap paparan UV dan mampu bertahan dalam kondisi cuaca yang Juga Yuk, Pahami Manfaat Dewatering dan Metodenya! 4. Sludge DewateringBerbicara tentang pengolahan limbah cair, sedikit banyak akan menyinggung tentang bagaimana memisahkan air dari pengotor-pengotornya. Pelaku pengotor paling dominan yang membuat air tersebut menjadi keruh adalah padatan baik yang terlarut maupun yang melayang dan mengendap. Proses untuk pemisahan antara padatan pengotor dan airnya dinamakan ini membuat kandungan padatan pada lumpur menjadi lebih besar dan kandungan air lebih sedikit sehingga memudahkan dalam penanganan pembuangan lumpur pada disposal area. Proses ini juga meringankan beban pekerjaan unit water treatment sehingga efisien. Manajemen lumpur yang kurang baik mengakibatkan terjadinya penumpukan sedimen pada pond sehingga memungkinkan terjadinya pengurangan kapasitas tampung volume desain. Apabila itu terjadi, resiko overflow peluapan air pun terjadi membanjiri sekitar banyak teknologi sludge dewatering yang tersedia, teknologi berbasis mekanik seperti belt press, screw press dan filter press. Namun Limbah tambang membutuhkan teknologi dengan kapasitas besar, minim mekanik, minim maintenance dan praktis aplikasinya. D-sludge tube dewatering system mengakomodir semua kebutuhan ini mengintegrasikan kemampuan mekanik dari tekanan pompa, kemampuan bahan kimia polimer untuk mengkondisikan lumpur agar menjadi gumpalan besar dan kemampuan material geotextile polypropilen sebagai filtrasi, material tersebut didesain khusus untuk dewatering karena selain memiliki kuat tarik dan jahitan yang tinggi, material ini memiliki daya permeabilitas yang tinggi dengan porositas yang disesuaikan dengan kebutuhan. Geosinindo melalui anak perusahaannya PT Geoteknika Adhiyasa menyediakan jasa dewatering lumpur sebagai sebuah sistem, mulai dari penyediaan/pemasangan material d-sludge tube, pemasangan unit polimer dissolver dan operasional sini, dapat disimpulkan bahwa limbah pertambangan dapat menimbulkan dampak yang berbahaya bagi lingkungan, bahkan membahayakan keselamatan manusia. Pengelolaan dan pengolahan limbah tambang harus dilakukan secara teliti dan hati-hati agar tidak menimbulkan masalah baru, seperti kebocoran zat kimia karenanya, pelaku industri tambang diwajibkan untuk melakukan pengelolaan dan pengolahan limbah secara optimal. Aktivitas pengolahan limbah pertambangan pun harus dilakukan mengikuti ketentuan dari pemerintah untuk meminimalkan dampak beberapa metode yang bisa dilakukan untuk mengelola dan mengolah limbah secara aman. Beberapa di antaranya adalah menggunakan pH adjuster, deep well injection, secure landfil dan sludge dewatering. Dalam menjalankan proses pengelolaan limbah tambang, Anda juga harus menggunakan peralatan dan material yang yang berencana untuk mengelola limbah tambang dengan sludge dewatering, Anda bisa menggunakan material berkualitas buatan Geosinindo. Seluruh material dari Geosinindo telah diuji di Laboratorium Terakreditasi GAI-LAP untuk memastikan agar spesifikasinya sesuai dan dapat hanya itu, Geosinindo juga menyediakan layanan konsultasi yang akan membantu Anda dalam mendesain dan membangun fasilitas pengelolaan limbah pertambangan sesuai dengan standar dan kebutuhan Anda. Untuk informasi lebih lanjut mengenai material berkualitas dari Geosinindo, silakan hubungi kami di sini! ArticlePDF AvailableAbstractPengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur- unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20?g/g, mangan Mn sebesar 202,66?g/g sampai 372,92?g/g dengan ambang batas 0,15?g/g, dan seng Zn sebesar 4,98?g/g sampai 75,04?g/g dengan ambang batas 0,06?g/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. Jurnal Geomine, Vol. 6, No. 2 Agustus 201849 ANALISIS KARAKTERISTIK LIMBAH PENGOLAHAN EMAS DAN POTENSI PEMICU AIR ASAM TAMBANG PADA PERTAMBANGAN RAKYAT KELURAHAN POBOYA KAB. DONGGALA, PROV. SULAWESI TENGAH Abdullah Kilian1*, Sri Widodo2, Nurliah Jafar1 Teknik Pertambangan, Universitas Muslim Indonesia Studi Teknik Pertambangan Universitas Hasanuddin Email abdullahkilian2 Pengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur-unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20µg/g, mangan Mn sebesar 202,66µg/g sampai 372,92µg/g dengan ambang batas 0,15µg/g, dan seng Zn sebesar 4,98µg/g sampai 75,04µg/g dengan ambang batas 0,06µg/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Kata kunci air asam tambang, emas, limbah, mineral sulfida. ABSTRACT The gold processing with mercury in Poboya causes waste that has the impact on the envimental problems in surrounding area. This study aimed to determine the potential of the mine acid drainage from gold processing waste. The method used is the characterization of mineralogy and geochemistry. The results showed that sulphide minerals were detected in each sample, sucha rembergite FeMnS, violarite FeNi2S4, and secondary sulphide minerals melanterite and retgersite The presence of sulphide minerals in the sample affected the formation acid mine drainage. The assay result of all samples showed the detection of the elements contained acid mine drainage such as iron Fe of to with a threshold of 20μg/g, manganese Mn of 202,66μg/g to 372,9μg/g with a threshold of 0,15μg/g, and zinc Zn of 4,98μg/g to 75,04μg/g with a threshold of all of these elements have exceeded the threshold according to the National Standardization Agency SNI, 2004. The results showed that the gold processing waste at the study site has the potential to generate the acid mine drainage. Keywords acid mine drainage, gold, tailing, sulphide mineral. Jurnal Geomine, Vol. 6, No. 2 Agustus 201850 PENDAHULUAN Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat.. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Rosana dkk, 2011. Kelurahan Poboya merupakan salah satu lokasi penambangan emas tradisional yang beroperasi sejak tahun 2009 hingga sekarang. Merkuri digunakan untuk memisahkan emas dengan pasir, sehingga masyarakat Poboya dan sekitarnya berpotensi terkena dampak dari penggunaan merkuri. Badan Lingkungan Hidup Kota Palu, tahun 2011 jumlah penambang emas di tambang rakyat tersebut mencapai 5000 orang dan jumlah tromol berkisar unit, dimana setiap unit menggunakan merkuri 0,5 kilogram per hari dan 20% mercuri terserap oleh tanah dan berpotensi sebagai sumber pencemar baik udara, air dan tanah Albasar, 2015. Pengolahan emas menggunakan merkuri di Kelurahan Poboya Kabupaten Donggala Palu Provinsi Sulawesi Tengah menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar, salah satunya yaitu timbulnya air asam tambang. Oleh karena itu, penelitian ini bertujuan untuk mengetahui mineral sulfida yang dapat memicu pembentukan air asam tambang dan unsur maupun senyawa yang terdapat pada air asam tambang. METODOLOGI Alat dan Bahan Metode yang digunakan dalam penelitian ini yaitu menggunakan analisis mineralogi dengan menggunakan alat XRD-7000 Shimadzu dan analisis geokimia menggunakan XRF EDX-720 Shimadzu di Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin dan alat AAS Atomic Absorption Spectrophotometer di Balai Besar Laboratorium Kesehatan BBLK Kota Makassar. Sampel diambil dari wilayah pertambangan rakyat di Kelurahan Poboya Kabupaten Donggala Provinsi Sulawesi Tengah yang merupakan limbah hasil pengolahan emas menggunakan sistem amalgamasi yang telah disimpan pada tempat penampungan limbah yang berbeda. Tahap Pengambilan Data Pengambilan data dilakukan survei lapangan meliputi pengumpulan data dan informasi di daerah penambangan dan pengolahan emas. Pengambilan data geokimia dilakukan dengan pengambilan sampel dari beberapa lokasi dengan menggunakan GPS untuk mengetahui koordinat lokasi sampling. Proses pengambilan sampel tailingmenggunakan sekop untuk memasukkan sampel ke dalam kantong Analisis Data Pada tahap ini dilakukan untuk mengetahui mineral secara kuantitatif maupun kualitatif dan unsur serta senyawa yang berpotensi menimbulkan air asam tambang. HASIL DAN PEMBAHASAN Hasil Uji XRD Pengujian XRD bertujuan untuk mengetahui kandungan mineral sulfida yang terkandung di setiap sampel Setiabudi, 2012. Berikut ini hasil uji XRD pada sampel limbah pengolahan emas. Tabel 1. Kandungan mineral sampel menggunakan XRD. Jurnal Geomine, Vol. 6, No. 2 Agustus 201851 Gbr 1. Pola difraksi hasil uji XRD sampeln1. Gbr 2. Pola difraksi hasil uji XRD sampelk2. Hasil Uji XRF Pengujian XRF bertujuan untuk mengetahui jenis senyawa oksida dan unsur-unsur kimia yang terkandung di setiap sampel. Berikut ini hasil uji XRF pada sampel limbah pengolahan emas. Tabel 2. Hasil kuantitatif senyawa oksida uji XRF. Hasil Uji AAS Pengujian ini bertujuan untuk mengetahui unsur-unsur kimia dan kandungan logam berat yang memicu terbentuknya air asam tambang. Hasil pengujian ini kemudian langsung terbaca oleh komputer yang dapat dilihat pada tabel 3. Tabel 3. Hasil pengujian unsur logam berat menggunakan AAS. Pembahasan Berdasarkan hasil pengujian menggunakan alat XRD, XRF dan AAS menunjukan adanya perbedaan karakteristik pada setiap sampel. Karakteristik tersebut diuji melalui analisis minerologi dan geokimia sebagai berikut. Jurnal Geomine, Vol. 6, No. 2 Agustus 201852 Analisis Mineralogi Sampel Pada hasil uji XRD, diterangkan bahwa semua sampel uji didominasi oleh mineral kuarsa SiO2, hal ini disebabkan karena mineral kuarsa sebagai mineral yang paling sering dijumpai sebagai penyusun kerak bumi. Mineral kuarsa yang terdeteksi pada sampel 1 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 1 juga terdeteksi mineral melanterit dengan sudut 2θ 18,11° dan intensitas 24,5Å dan rambergit dengan sudut 2θ 25,77° dan intensitas 62,2Å seperti yang ditunjukkan pada gambar 1. Berdasarkan karakteristik mineralogi sampel 1 terdapat mineral yang dominan yaitu kuarsa, pada hasil pengujian XRD menunjukan mineral ini memiliki sistem kristal trigonal, unit cella=4,9140Å dan c=5,4060Å, serta densitas 2,648gr/cm3. Kehadiran kuarsa yang melimpah membuktikan bahwa batuan dasar dari sampel 1 berasal dari tipe endapan epitermal Maulana, 2017. Pada sampel 1 juga terdeteksi mineral sulfida yaitu rambergit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal heksagonal, unit cell a=3,8920Å dan c=6,4450Å, serta densitas 3,266gr/cm3. Pada sampel 1 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu melanterit, pada hasil uji XRD melanterit memiliki sistem kristal monoklin dengan unit cell a=14,1000Å, b=6,5180Å dan c=10,8860Å, serta densitas 1,955gr/cm3. Mineral kuarsa yang terdeteksi pada sampel 2 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 2 juga terdeteksi mineral kalsit dengan sudut 2θ 29,64° dan intensitas 124,9Å, retgersit dengan sudut 2θ 20,95° dan intensitas 195,9Å, dan Violarit dengan sudut 2θ 31,44° dan intensitas 11,6Å seperti yang ditunjukkan pada gambar 2 Berdasarkan karakteristik mineralogi sampel 2 pada gambar 2 yang merupakan limbah pengolahan yang relatif masih memperlihatkan kemiripan karakteristik dengan sampel 1, hal ini dapat terlihat dari keterdapatan kuarsa, mineral sulfida, dan mineral sekunder hasil pelapukan mineral sulfida, namun jenis mineral sulfida yang terdeteksi berbeda dengan sampel 1. Kuarsa yang terdeteksi pada sampel 2 memiliki sistem kristal trigonal, unit cell a=4,9124Å dan c=5,4039Å, serta densitas 2,649gr/cm3. Pada sampel 2 juga terdeteksi mineral sulfida yaitu violarit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal isometrik dengan unit cell a=9,4621Å, serta densitas 4,735gr/cm3. Pada sampel 2 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu retgersit, pada hasil uji XRD mineral ini memiliki sistem kristal tetragonal dengan unit cella=6,7803Å dan c=18,2880Å, serta densitas 1,981gr/cm3. Pada sampel 2 juga terdapat mineral karbonat yaitu kalsit. Pada hasil pengujian XRD menunjukan kalsit memiliki sistem kristal trigonal, unit cella=4,9910Å dan c=17,0680Å, serta densitas 2,708gr/cm3. Analisis Geokimia Sampel Berdasarkan hasil uji geokimia sampel limbah pengolahan emas, pada pengujian XRF terhadap sampel 1 menghasilkan 21 unsur yang terdeteksi, dan sampel 2 terdeteksi 19 unsur tabel 2. Berdasarkan jumlah elemen yang terdeteksi pada hasil uji XRF sebagian besar elemen utama terdeteksi juga oleh pengujian XRD. Geokimia sampel penelitian ini diketahui melalui analisis XRF dan AAS, sampel pada daerah penelitian berasal dari dua jenis limbah yang berbeda akan menghasilkan karakteristik geokimia yang juga berbeda. Pengujian XRF berguna untuk mengetahui unsur dan mineral yang teroksidasi pada sampel. Pada kedua sampel terdeteksi SiO₂. hal ini terjadi karena kuarsa merupakan mineral paling banyak ditemukan pada kerak bumi. Terdeteksinya Al₂O₃ yang juga melimpah. Dari semua sampel uji juga terdapat senyawa Fe₂O₃ yang merupakan mineral hasil sisa oksidasi. Al₂O₃ dan Fe₂O₃ merupakan dua senyawa yang dapat menghasilkan logam didalam air asam tambang Sayoga, 2014. Beberapa unsur yang terdeteksi seperti arsen, mangan, tembaga dan besi akan berpengaruh terhadap perolehan emas bila dilindi dengan sianida Li, et Jurnal Geomine, Vol. 6, No. 2 Agustus 201853 al., 2010. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun sebagai akibat kegiatan pertambangan. Dispersi logam yang terjadi secara alami akan membentuk rona awal kandungan logam di daerah sekitar tubuh bijih yang tinggi, yaitu diatas rata-rata pada kerak bumi Wahyudi, et al., 2014. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada semua sampel terdapat unsur Fe dan S yang apabila berikatan dapat membentuk mineral sulfida yang sangat reaktif membentuk asam seperti pirit. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun akibat kegiatan pertambangan. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada tabel 4 dapat dilihat hasil pengujian geokimia dengan menggunakan metode AAS, semua sampel terdeteksi unsur logam berat yang sering ditemukan pada air asam tambang yang telah melewati batas berdasarkan nilai ambang batas logam berat pada sedimen atau tanah oleh Badan Standarisasi Nasional SNI tahun 2004. Tabel 4. Hasil pengujian logam berat yang pada umumnya terdapat pada air asam tambang. Nilai Ambang Batas ug/g KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan bahwa limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. UCAPAN TERIMA KASIH Peneliti mengucapkan terima kasih kepada Kepala Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin, Balai Besar Laboratorium Kesehatan BBLK Makassar dan Jurusan Teknik Pertambangan Fakultas Teknologi Industri Universitas Muslim Indonesia. DAFTAR PUSTAKA Albasar, Daud Anwar dan Maria 2015. Pajanan Merkuri Hg Pada Masyarakat Di Kelurahan Poboya Kota Palsulawesi Tengah. Skripsi. Universitas Hasanuddin. Li, Y. Jian, L. & Guan, W. 2010. Cyanidation Of Gold Clayore Containing Arsenic And Manganese. Issue, 2 17, 132-135. Maulana, A. 2017, Endapan Mineral. Yogyakarta Penerbit Ombak, Rosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Ilmu-ilmu Hayati dan Fisik, 13 2, 235-247. Sayoga, R. 2014. Air Asam Penerbit ITB. Setiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian UPI Press. Wahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira. ... Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Kilian, Abdullah, 2018. Usaha pertambangan, oleh sebagian masyarakat sering dianggap sebagai penyebab kerusakan dan pencemaran lingkungan. ...The mining and processing of people's gold produces impacts on the surrounding environment. Some residents immediately dumped the waste gold processing results into the environment. It is necessary to analyze the actual condition of mercury pollution based on a map of the level of pollution vulnerability to determine the size of the level of difficulty and the ease of polluted substances to affect surface water quality. The purpose of this study is to analyze the actual condition of the level of vulnerability of surface water pollution around the study area. The method used in this study is a survey method and field mapping, sampling methods purposive sampling, laboratory analysis methods, mathematical methods, and descriptive evaluation methods. Calculation of the level of vulnerability of surface water is the PCSM Point Count System Model method with 3 parameters, namely land use, slope, and rainfall. Overlay is done between the level of pollution vulnerability map with the actual conditions of pollution in the field. The results showed the study area has a level of vulnerability to surface water pollution in the study area including the classification of quite vulnerable and very vulnerable. Based on the results of the study it can be concluded that the total score of 36-43 included in the vulnerability class is quite vulnerable. The total score of 43 - 50 is included in the very vulnerable vulnerability class. Actual mercury levels in the study area were known in a row AP1-AP6 samples were 0,00046 mg / L; < mg / L; < mg / L; < mg / L; 0,00039 mg / L and <0,00006 mg / L. These results indicate that surface water in the study area has not been contaminated with mercury because its value is brought to all quality ÂEdy NursantoAfroza PratiwiEddy WinarnoRiria Zendy MirahatiBased on petrographic data, XRD, and fluid inclusions, it was interpreted that the quartz veins associated with low sulfide in Karangsambung area underwent 2 stages of system change from mesothermal system to epithermal system. This means showing the mineral potential contained in material, including on the Luk Ulo River where alluvial deposits are present. Therefore, what needs to be done next is to determine the composition of the material of the alluvial material in the Luk Ulo River, Kebakalan Village using XRD, and AAS so that its potential is known. This research is limited to mineral potential in XRD and AAS Au, Ag, and Cu in 2 samples, A sand and B rock. XRD results on samples A and B showed that quartz SiO2 had the highest percentage 30-50% compared to other minerals. While the results of the AAS tests showed that the highest Au and Ag contents were in sample B and Cu in sample A with total of g/ton Au, g/ton Ag, and g/ton Cu. Meanwhile, the lowest total Au and Ag were in sample A and Cu was in sample B which amounted to Au g/ton, Ag g/ton, and Cu g/ton. Yuliang LiJian LiuWei-sheng GuanThe extraction process of gold and silver from the gold clay ore containing arsenic and manganese was investigated. With the conventional technique, the leaching rates of gold and silver are and respectively. To eliminate the negative effects of arsenic and manganese on cyanidation and increase the gold and silver leaching rates, a novel catalyst was added. The content of the catalyst used in the process was 8 g per 500 g org sample, the sample size was 60 μm and the pH value was kept between 10 and 11. Leaching with the catalyst for 3–5 h under certain conditions, the gold leaching rate increased to over 90% and the silver leaching rate increased to 80%–90%. The catalyst can effectively liberate gold and silver from the enclosure of arsenic and manganese and the industrial experiment has great significance to the development and utilization of the gold clay ore containing arsenic and manganese. Keywordsgold ore-cyanidation-catalyst-gold-silver-leaching rateMineralisasi Emas Epitermal Di Daerah Sako Merah Dan ManauM F RosanaDkkRosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Jambi. Bionatura-Jurnal Ilmu-ilmuR SayogaSayoga, R. 2014. Air Asam Tambang. Bandung Penerbit Material Prinsip dan Aplikasinya dalam Penelitian KimiaA SetiabudiR HardianA MudzakirSetiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian Kimia. Bandung UPI Mineralogi Fisika Kimia Limbah Pegolahan EmasT WahyudiL TahliA AutantoWahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira.

pertambangan emas menghasilkan limbah logam berat cair seperti